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ABSTRACT

Conditions are given for f(t) and the regularly

varying function p(x) = x Y L(x), so that the asymptotic

relation

y (t) 9 (xt) dt "(x) f f (t) t'Y d t •
0') 0)

0 0

holds true as x-oo, oras x -+0

As a special case one obtains extensions of some results

concerning the asymptotic behavior ot the Laplace transform

of regularly varying functions.



SOME THEOREMS CONCERNING SLOWLY VARYING FUNCTIONS

J. KaramataI

1. Let L(x) be a slowly varying function in the neighborhood of oo, or

of +0, i.e. such that L(x) >0 for x >0, and that, for every t>0,

L(X)-i,
L(x) 1 1

as x -o , or as x - +0, respectively. We assume that L(x) is continuous

and every x > 0 (which is not absolutely necessary; see [1] and [2]).

It is well-known (see [3]) that for every q] > 0 ,

x- L(x) -- 0, and x T] L(x)- oo . (2)

and if we put

P(x) = sup {t" L(t)j and Q(x) = sup{t 71 L(t)} (3)
0<t<x t>x

then we have

P(x) -- x" L(x) and Q(x) - x-  L(x) , (4)

as x-oo, oras x-+0, respectively.

Both of these relations follow easily from the following fundamental property

of slowly varying functions:
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If the relation (1) holds true for each fixed t > 0, then it holds true

uniformly for t E [a,b], where 0 < a < b < o, (see [1], [2] and [3]).

Let finally f(t) be integrable in every finite interval and let

CO

T(x) f f (t) L(xt)dt
0

The study of the asymptotic behavior of T(x), or more precisely of the

relation

00
T(x) -L(x) f f(t) dt , (5)

0

as x -- o, or as x - +0, was the object of numerous papers; without

mentioning those dealing with special forms of the function L(x), we remind

the reader that K. Knopp [4] considered C6s~ro, and H51ders transforms of order

k, which correspond to the case that f(t) = k(l -t) k - l t i1 , respectively

f(t) = (log l/t)k - I t'1 , 0< t< 1, q > -1, as x-oo. He also studied [4],f~)-r (k)

[5] Abel-Laplace transforms, that is the case that

f (t) = e- t 0 1, t> 0, ]> -1

as x-.+ 00, while G. Doetsch [6] considered the same case for x -"+0

However, the main argument of the proof is not clearly elaborated by the latter.

Finally the general case of the relation (5) was stated by S. Aljan6id, R. Bojani6

and M. Tomid [7], [8]. We shall give here simpler proofs of their results, as

well as some additional remarks.
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2. To this end we observe first that the asymptotic behavior of T(x), as

X-. , or as x - +0, solely depends on the behavior of f(t) in the neighborhood

of both t = +0 and t = 0c, since the assumption (I) implies the uniform

convergence of (1) in every finite interval [ab], a > 0 . However, it

follows from the assumption (1) only, in view of Fatoul s lem ma, that

00 00

lim inf 1 f f(t) L(xt) dt > f f(t) dt , (6)
x-.00, or x-.+ 0 L(x) 0 0

if f(t) > 0 for every t > 0 . From this observance one easily derives the

following theorem.

Theorem I. Let I(x) be a slowly varying function in the neighborhood of

00, or +0, and let F(t) be non-negative for t > 0 , integrable in [0,o0] and

such that

00 00
f Et) L(xt) dt - I(x) f Et) dt , (7)
0 0

as x-,cc, or as x-+0 ; if

If(t)I <F(t) for t>0

then

f f(t) L(xt)dt ,- (x) f f(t)dt , (8)
0 0

as x - cc, or as x -- +0, respectively.
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Proof. From the assumption If < F follows that

F(t)*f(t)>0 for t>0

therefore, by (6),

f F(t) Lkxt)dt f f(t) IUx)dt>

00 00
0 0

> (x) f r(t) dt * L(x) f f(t) + o(1(x))
o 0

this implies, in view of the assumption (7), that

cc 00•f f(t) Ikxt) dt > * Itx) f f(t) dt + o (Ix))
o 0

as x -, o0, or as x -- + 0, respectively, which completes the proof of (8)

Theorem 2. Let A(x) be a slowly varying function in the neighborhood of

00, or +0, and let f(t) be nonequative for t > 0 , integrable in [0, *a] and

such that for some q0 > 0 we have both

f(t) t dt<0o and f f(t) t dr< *. (9)

0 a

Then

f f(t) L(xt) dt - L(x) f f(t) dt (10)
0 0

holds as x- 0o or as x - +0, respectively.
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Proof. Let O< < o and a > 0, then (3) and (4) imply that

a 00f f(t) I(xt) dt = x-'l f f(t) t-'I{(xt)')L(xt)} d+- x0 f f(t) t0 {(xt) - 'l l(xt)} dt

o 0 a

a 00

<x -1 P(ax) f f(t) t-"dt + x Q(ax) f f(t) t 1 dt
0 a

a 00

< {a' ff(t) t-'dt + - f f(t) t dt} L(x) + o((x))
0 a

Finally, taking 0- 0, one gets

T(x) < L(x) f f(t) dt + o(L(x))
0

as x- oo, or as x -, + 0, respectively, which together with (6), completes

the proof of (10) .

It should be stressed that both assumptions (9) are indispensable in each

ofthecases x-wo and x-+ 0

In fact, if e.g. x- w, and if

f(t) I(t)/t

where 1(t) is a slowly varying function as t--+ 0, such that the integral

f t)dt converges

+0

then the function
l/x

I (t) f - dt0 t
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tends to 0 and is a slowly varying function as x- o, (see [3]). In this case

it suffices to let

A (1) for 0 <x< I

I (x) for x> I

1 + log x

Then we have

I. f 0f(t) L(xt)dt- oo, as x-.oo
L(x) 0

since

00 i l/x *

f f (t) L (xt) dt > 1 f (t) dt = * (1)(1 + log x)
L (x) L(x) 0

An immediate consequence of the theorems 1 and 2 is the following

theorem.

Theorem 3. Let a< 3 and t f(t) be integrable in [0,00] for

o<q1< P, i.e.

00

f t' If(t)!dt< Co for a< < - (11)
0

let V (x) be a regularly varying function in the neighborhood of oo, or of +0,

i.e. such that,

a N xo x Y L (x)

as x -- o, or as x- +0 . Then we have for every a< y < 1
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f (t) V (xt) dt- p(X) f f (t) t'Ydt
0

as x-P oo, or as x - +0, respectively. In general the theorem is not true if

y = a, or Y = P, even if the integral (11) converges for 71 = a, or T1=P ,

3, Let us return to the above mentioned theorems of G. Doetsch and K. Knopp

mentioned above concerning the Laplace transform

00
@()=f e-s V(t) dt

0

of the regularly varying function

V(x) = xY L(x)

For s = 1Ix, x positive and real, one obtains

00 00

((S) = x f et V (xt)dt = xy 1 f t'Y L(xt) dt
0 0

Hence, the theorems of Doetsch and Knopp follow from theorem 3, with

f(t) = e- t ty .

More precisely, if q(x) = xy L(x) is regularly varying in the neighborhood of

00, or +0, we have

00
-D(s) :f e- s t V( t ) dt - - - (y + 1)  l s

0 s

for every y> -1, as s - +0 (theorem of Knopp) or as s - o (theorem of

Doetsch).
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One can complete these results by extending the concept of regularly

varying functions to the complex domain as follows.

Let P(s) be holomorphic and #0 in the domain D: Iarc si < , s 0

Call 1(s) regularly varying in the Stolz's angle if, for every positive real

number X > 0, the limit

(St) lim '(X s)/'1(s) = A X

exists as s-0, oras s-", intheStolz's angle, i.e. if for every E>0

and O< a<Z, there is 71 > 0 such that

Is[ < n and Iarcs! < I==)g -A I< E Y

or

IsI>i and Jarcs < == I

respectively.

The study of properties of regularly varying functions of a complex variable

will be the object of another report. Here we shall only mention certain results

concerning the Laplace transform of a regularly varying function defined on the

real axis.

If 4(s) is regularly varying in the Stolz's angle, then there exists a

complex constant y such that

1)(s) = s Y L ( s ) ,s D ,
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where the function L(s) is slowly varying in the Stolz's angle, i.e. such

that for every positive real X

(St) lim L(k s)/L(s) 1

Moreover, for every S(s) such that

(St) lim S(s)/s = , Iarc < ,

we have

(St) lim D(S)/D(s) =

Using these results , one can strengthen the theorems of Doetsch and

Knopp as follows.

Let the function

q(t) = tI(t)

be defined on the real positive axis and be regularly varying as t -- oc, or as

t--+O . Then its Laplace transform

004 =(s f e- st 9(t) dt
0

where Ry> -1, is regularly varying in the Stolz' s angle in the neighborhood

of 0, or oo , respectively; moreover,

s Y+ sI , (s) - r(Y+ n) ,t(1s Isag)

as s-0. or as s- 00, in the Stolz's angle.
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4. Theorem 3 can be extended to functions f(t) which are not absolutely

integrable in [0, o ] by suitably restricting the class of regularly varying

functions. To this end we shall first prove the following lemmas.

Lemma 1. Let L(x) be defined for x > 0 and such that

x 1 L(x) - 0 as x-+0 (12)

for some - > 0; assume also that

L(x) = L1(x) Lz(x) , (13)

and that there exists a 6 > 0, such that

0_(X) def 6

= x Ll(x) increases, (14)

and 0 < 2(x) ef X L2(x) decreases,

and that for every q' > 0

x LI(x ) - 0 as x- +0 . (15)

Then

faI d {t L (t)} 2 n { + 6 -F G1 (a) G (a) - L(a)} (16)

0 -- ,] 2E 1

for every a > 0 and 0 < j < T/Z, where

xE Gi(x) = sup {te Li(t)}, i= 1, Z (17)
0< t< x
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Similarly, if (12) and (15) are replaced by

X TL(x)_-O, as x- , (18)

for one -q >0, and by

x- 1I L2(X)- 0 , as x-o , (19)

for every r' > 0, then

Id{t- 1 L(t)}I < {bz11 zF H (b) H2(b) - L(b) }, (20)
b

for every b > 0, where

xE Hi(x) = sup {t-'E Li(t)}, i = I, 2 (21)
t>x

Proof. By (13) and (14) P

Id{t L(t)}I= d {t9 (t) v(t)}I< 9? d{t n  } - tin Vd (p

IS. 2 v d {tII (l) - d {t II L (t)}

therefore, by (12)

a af I d {t" L(t)} I<__.2 f p 2 t) d{tnTI P(t)} -a" L(a) (2{2)

0 0

On the other hand, by (15) and (17)
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a a
f92 (t ) d t n  0l(t)} I f t - - it' L 2 t)) d {t 1 +  L l(t)} I_

o 0
a

E_ aa t-6 ?+
a G2 (a) ft d {t L14t) I

0

a

a G 2(a){a9-C Ll(a) +(6+ E) f t Ll(t ) dt}
0

_G 2 (a) {a I Ll(a) + (6 +,E) a' f t -  t L(t) } dt
0

G (a) {a TI LI(a ) + 6 aT' Gl(a))

and, since Ll(a) <G 1(a) by (17), we obtain

f aPzCt)d { (t)} <n6e al G(a) G (a)0 2-1 11- 2E la G2(a

Statement (16) results by introducing this inequality in (22)

The inequality (20) is obtained similarly: by (13), (14) and g8)

we have

f Id {t- L(t)}I <-2 f 9 1 (t) d {t-n p2 (t)} -bt 1 L(b) ,

b b

and by (19) and (21)

00

-f 1(t)d{t-% 2 (t)} 1 6-C b -' H (b) H

b - -Z 1 2(b)
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From this follows the next lemma.

Lemma 2. Let L(x) be a function slowly varying in the neighborhhod

of infinity; if

L(x) = p1(x) p?(x)

where (1(x) and 9 2(x) are regularly varying and

x LI(X) increases

Szx -6
( 2 (X)= x L2(x) decreases

for some 6 > 0, and where L1(x) and L2(x) are slowly varying in the

neighborhood of infinity, such that

xTlLP(x)--0, i=l, 2, as x- +0

for every il > 0 . Then, for every a > 0, b > 0 and 1 > 0, and for

M >1 + 26/ 1r there is a x M such that

a
x > xM f Id {t0 L(xt)} < Mal L(x) (23)

0

and

00 d (xt)}i <Mb - T] L(x) (24)

b

An analogous statement holds for the neighborhood of +0 instead of oo

if
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XL (X)0 i=1 , as x- ,

for every Ti > 0

Proof. Let

K(a) =2 + -

1=-ZE Gl(a) G2 (a) - L(a)

then the inequality (16) implies

a
f Id {tOL(xt)}I <a" K(ax)
0

on the other hand, since Ll(x) and L,(x) are slowly varying, (17) implies

that

G.(ax) - L(x), i = ,2, as x- ,

for every e > 0 . Therefore

K(ax) -(r2 -1)L(x), as x ao,

and E being arbitrary the statement (23) obtains.

Analogously, the statement (24) follows from the inequality (20).

Now we can complete theorem 3 by the following theorem.

Theorem 4. Let a < P and let f(t) be integrable in every finite interval

[a,b], a > 0, such that for every 1 between a and P, a< 1 < P, the

integral
00

f t1 f(t) dt converges.
+0
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Let (p(x) = xy L(x) be a product of two monotone functions pl(X) and Vz(X)

regularly varying either in the neighborhood of infinity and such that

x L(x)-0, i = 1,2, as x-+0,

or in the neighborhood of zero and such that x - 1 Li(x)- 0, i = 1,Z, as x- 00

for every T1 >0 . Then, for every a< y < P I

~00
f(t) 9(xt) dt (x) f (t) tydt (25)
0 0

as x - o, or as x -+0, respectively.

Proof. From the fact that (see [1], or [ 3])

O(xt)/ Nx - t Y

uniformly in every finite interval [a,b], a> 0, as x-- o, or x-+O

respectively, we first conclude

b b
f f(t) (xt) dt : q(x) f f(t) tydt +o(qp(x))
a a

00

= e(x) f f(t) tYdt + r(a,b) 9 (x) + o(q(x)) (26)
0

where

a
r(a,b) = - f f(t) tdY t -f f(t) ty dt

0 b

can be made arbitrarily small for sufficiently small a and 1/b
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Then by choosing y - a < -y and writing

X 
00F(x IN f f(t) ty' dt, F 2(x) =f f(t) t'" dt

0 x

we obtain

f f(t)p (t)dt = f f(t) ty 'l {t0~ L (xt) } dt=

0 0

a
= f~ {a 1 L (ax) F,(ax) - f Fl(t) d {t0 Lxt)}I

0

Furthermore, since

L(ax) 'ZM' L(x) for x >x,

we have by (23)

a

I f f(t) q,(xt)dti <_xy{a1l IF I(a)I M' Lqx) + Ma x u ~~)

< a"{M' IF 1(a)[ + M sup [F 1(a)[} qV(x) <
0<t<a

< all q (x N (27)

On the other hand, since

L(bx) -S M" L(x) for x > xM11

using (24) we obtain analogously
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If f(t) p (xt)dt <b -' {M" IF2(b)i + M sup IF2(t)L1 ((x) <
b t>b

< M 2 b
-  (x) (28)

By combining (26), (27) and (28) one gets

I f f(t) q(xt)dt - p (x) f f(t) t YdtI <_
o 0

<_ {M I aT1 + r(a,b) + M2 b
-'I } p(x) +o(9(x)) ,

which yields (25) by letting a - 0 and b - 0o after the limiting passage

x-- 00, or x- +0, respectively.

Theorem 4 generalizes a result of Aljaneic , Bojani6 and Tomi6

[7, Theorbme 4]. In fact, these authors assume that L(x) is a product of two

monotone slowlyvarying functions, while Theorem 4 assumes the factors to be

monotone and regularly varying only. A slightly stronger case is obtained if e. a.

L(x) is assumed to be of bounded variation in every finite interval and if for

every 6< 0 there exists a x such that (13) and (14) hold for x > x6 .

Then the function L(x) is slowly varying in the sense of A. Zygmund [9], i. e.

for every 6 > 0 there exists x 6 such that for X>x6

x L(x) increases and x- 6 L(x) decreases. (29)

However, R. Bojani6 has remarked that (29) holds if and only if

xL' (x)=o(L(x)), as x- oo
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where L'+ (x) and L' (x) denote the upper and lower right derivate of

L(x), respectively. Therefore, one obtains as a corollary of Theorem 4,

that (25) holds if q(x) is differentiable and if

xs'(x)/(x)-'y as x-.oo .
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